Drei Leitprojekte für grünen Wasserstoff

  • Bundesregierung ⏐ Startseite
  • Energie und Klimaschutz

  • Schwerpunkte

  • Themen   

  • Bundeskanzler

  • Bundesregierung

  • Aktuelles

  • Mediathek

  • Service

Forschungsförderung des Bundes Drei Leitprojekte für grünen Wasserstoff

Wasserstoff ist ein wesentlicher Baustein zum Gelingen der Energiewende. Um eine grüne Wasserstoffwirtschaft weiter voranzutreiben, fördert das Bundesforschungsministerium seit 2021 drei Wasserstoff-Leitprojekte mit bis zu 740 Millionen Euro. Forscherinnen und Forscher des Karlsruher Instituts für Technologie bringen ihre Expertise in allen drei Bereichen ein. 

4 Min. Lesedauer

Eine mit der Aufschrift "Wasserstoff" gekennzeichnete Rohrleitung in einer Brennstoffzelle

Grüner Wasserstoff ist ein flexibler Energieträger und unverzichtbar für die Energiewende.

Foto: picture alliance/dpa/Jens Büttner

Grüner Wasserstoff kann dabei helfen, Treibhausgasemissionen zu verringern. Er ist Schlüsselelement auf dem Weg zur Klimaneutralität Deutschlands bis 2045. So kann Wasserstoff beispielsweise als Brenn-, Hilfs- und Grundstoff in der Industrie eingesetzt werden und lässt sich mittels Brennstoffzellen in Strom und Wärme umwandeln, um Häuser mit Elektrizität zu versorgen und zu beheizen. Außerdem kann Wasserstoff als Treibstoff dienen oder als Rohstoff bei der Produktion synthetischer Kraftstoffe für Lastkraftwagen, Züge, Schiffe und Flugzeuge.

Gemeinsam mit Partnern aus Industrie, Wissenschaft und Verbänden aus ganz Deutschland arbeiten Wissenschaftlerinnen und Wissenschaftler des Karlsruher Institut für Technologie (KIT) in drei Leitprojekten daran, die dafür notwendigen Technologien maßgeblich weiterzuentwickeln.

  • H2-Mare erforscht Möglichkeiten, Wasserstoff und seine Folgeprodukte direkt auf See mithilfe von Windrädern zu produzieren.
  • TransHyDE entwickelt, bewertet und demonstriert Technologien zum Wasserstoff-Transport.
  • H2-Giga widmet sich der serienmäßigen Herstellung von Wasser-Elektrolyseuren.

Das Bundesforschungsministerium brachte die drei Wasserstoff-Leitprojekte  2021 zur Umsetzung der Nationalen Wasserstoffstrategie  auf den Weg.

Grüner Wasserstoff wird durch Elektrolyse von Wasser hergestellt, wobei ausschließlich Strom aus erneuerbaren Energien zum Einsatz kommt. Unabhängig von der gewählten Elektrolysetechnologie erfolgt die Produktion von Wasserstoff damit CO2-frei.

H2-Mare: Wasserstofferzeugung auf See

Offshore-Windparks, also Windräder auf See, stellen eine wichtige Ergänzung zu Windparks an Land dar und werden derzeit weltweit mit Hochdruck vorangetrieben. Durch die kontinuierlich guten Windbedingungen auf See und die hohe Zahl an Volllaststunden, ist der Energieertrag offshore deutlich höher als an Land. Das Leitprojekt H2-Mare schafft die Grundlagen dafür, dass sich die Offshore-Windenergie ohne Netzanbindung direkt nutzen lässt, um beispielsweise über die Wasserelektrolyse grünen Wasserstoff herzustellen.

Ziel ist es, die Kosten von grünem Wasserstoff zu senken und die Wirtschaftlichkeit zu erhöhen. „Am KIT erforschen wir, wie wir aus dem auf einer Offshore-Plattform erzeugten grünen Wasserstoff direkt vor Ort einfach transportierbare Produkte, wie verflüssigtes Methan, flüssige Kohlenwasserstoffe, Methanol und Ammoniak, für die chemische Industrie oder für Kraftstoffe herstellen können“, sagt Professor Roland Dittmeyer vom Institut für Mikroverfahrenstechnik des KIT. „Um den dynamischen Betrieb direkt an Offshore-Windparks gekoppelter Power-to-X-Anlagen zu erproben, nutzen wir unseren Power-to-X-Anlagenkomplex im Energy Lab 2.0 am KIT.“ 

TransHyDE: Transportlösungen für grünen Wasserstoff

Nur selten wird Wasserstoff dort genutzt, wo er hergestellt wird. Um den Bedarf in Deutschland zu decken, muss er größtenteils aus wind- und sonnenreichen Regionen transportiert oder importiert werden. Deshalb erforscht und entwickelt das Leitprojekt TransHyDE Transporttechnologien und  infrastrukturen für grünen Wasserstoff. „Flüssiger Wasserstoff weist bei größter Reinheit auch die höchste Energiedichte auf. Am KIT nutzen wir die Energie und die Kälte des flüssigen Wasserstoffs, indem wir sie mit elektrotechnischen Anwendungen vereinen, wie etwa im Energietransport mit Hochtemperatur-Supraleitern oder in den Antriebssträngen von Fahrzeugen“, sagt Professorin Tabea Arndt vom Institut für Technische Physik des KIT.

Der Einsatz von Hochtemperatur-Supraleitern ermöglicht es, energieeffizient elektrische Energie und parallel chemische Energie zu transportieren. „Außerdem entwickeln wir Sicherheitsstrategien für Materialien und Handhabung über industrielle Anlagen hinaus“, so Arndt. In den Anlagen des KIT können die Wissenschaftlerinnen und Wissenschaftler die gesamte Kette von der Wasserstoff-Verflüssigung über die energietechnischen Anwendungen der Elektrotechnik bis hin zu Brennstoffzellenheizungen erforschen und umsetzen.

H2-Giga: Serienfertigung von Elektrolyseuren zur Wasserstofferzeugung

Grüner Wasserstoff lässt sich per Elektrolyse mit erneuerbaren Energien herstellen und als Energieträger vielfältig einsetzen. Die Produktion von Elektrolyseuren, also von Anlagen zur Wasserstofferzeugung mittels Strom, ist jedoch aufwändig und kostenintensiv. Das Leitprojekt H2-Giga will ihre serienmäßige und kostengünstige Produktion ermöglichen, um Deutschlands Bedarf an grünem Wasserstoff zu decken. Innerhalb der Technologieplattform ist das KIT an zwei Verbundprojekten beteiligt.

Im Verbund „HTEL-StacksReady for Gigawatt“ wollen die Beteiligten Stacks, also Zellstapel, für die Hochtemperaturelektrolyse und dazugehörige Produktionsprozesse und -anlagen entwickeln. „Die Elektrolyse bei hohen Temperaturen benötigt weniger kostenintensive elektrische Energie und der Mehrbedarf an thermischer Energie kann durch die in der Zelle entstehende Verlustwärme abgedeckt werden. Mit der Hochtemperaturelektrolyse können dann Wirkungsgrade von bis zu 100 Prozent erreicht werden, aktuelle Systeme erreichen bereits mehr als 80 Prozent“, sagt Dr. André Weber vom Institut für Angewandte Materialien – Elektrochemische Technologien des KIT. „Wir analysieren vor allem über elektrochemische und elektronenmikroskopische Methoden die Leistungsfähigkeit und Lebensdauer der Hochtemperatur-Zellen und Stackkomponenten.“ 

Der zweite Verbund „Stack Scale-up – Industrialisierung PEM Elektrolyse“ entwickelt neue Stack-Technologien und großserientaugliche Produktionsverfahren für die Niedertemperatur-Elektrolyse. Diese Elektrolyse über Polymerelektrolytmembran-Zellen (PEM-Zellen) zeichnet sich durch niedrige Betriebstemperaturen und eine hohe Leistungsdichte aus. „Am KIT charakterisieren und modellieren wir diese elektrochemisch und strömungstechnisch. Mithilfe modellbasierter Optimierungen wollen wir dann neue, leistungsfähigere Stack-Designs entwickeln“, so Weber. 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das Karlsruher Institut für Technologie (KIT) Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9.600 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Rund 23.300 Studierende werden durch ein forschungsorientiertes Studium auf Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vorbereitet.